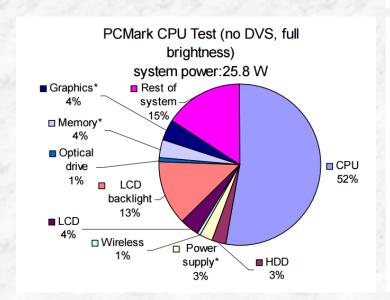
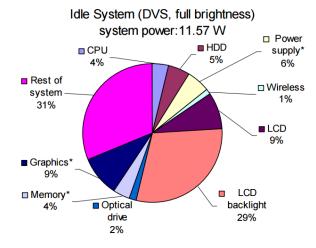
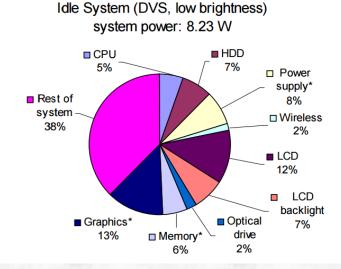
Using IR-Sensors to Limit the Screen-On Time of a Computer

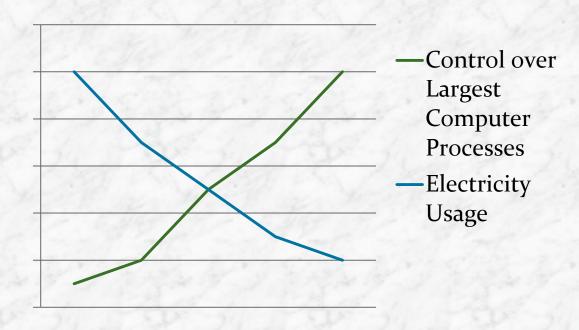

Akshath Jain North Allegheny Senior High School 9th Grade


Problem


- Technological advancements make products faster
 - Require more power
- Ameliorations have been made in all parts of a computer
 - Except for one
- Betterments of the backbone of our technology has ebbed to a nonexistent level
- The Battery

Background Research

- Power consumption breakdown on a computer–
 - 1. CPU
 - 2. Screen
 - 3. GPU
 - 4. HDD/SSD

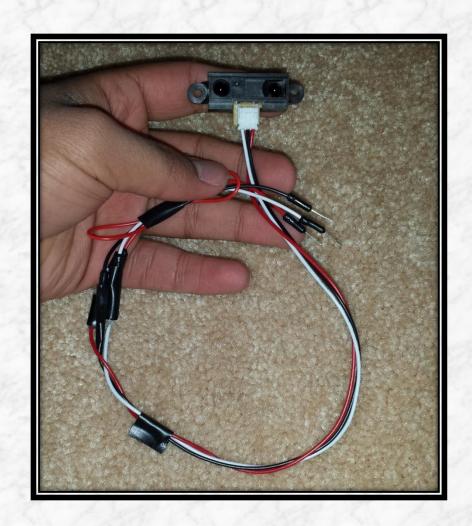


My Hypothesis

• If I can create a device that can control the largest energy consuming processes of a computer, then I will be able to mitigate the electricity requirements on that computer.

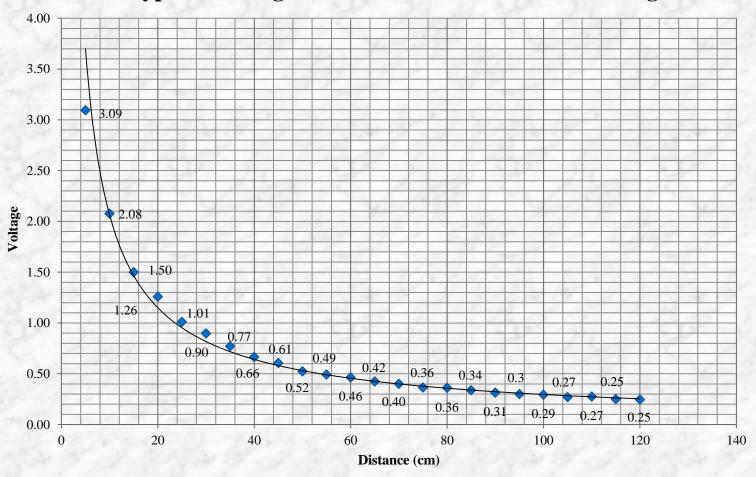
(This is to illustrate my hypothesis. Not shown to scale)

Purpose


- Create a device that
 - Utilizes user tracking algorithms
 - To determine the user's status at the computer
 - Take the appropriate action based on the user's status
 - Is an alternative to current power saving techniques

Engineering & Design Process

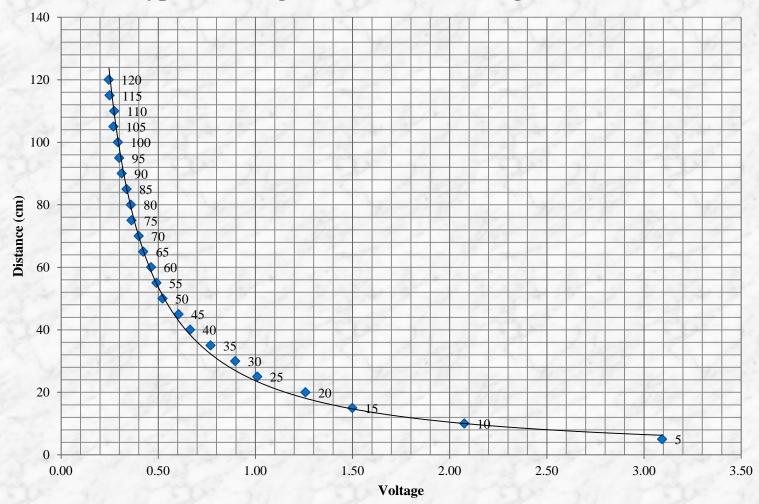
- Required parts:
 - A sensor
 - A microcontroller to control the sensor
 - A structure to house the various components


About the IR-Sensor

- Takes in 5 volts
- Integral combination of the:
 - Transmitter
 - IRED
 - Receiver
 - PSD
- Uses encapsulated triangulation techniques to gauge distance
- Utilizes analog output
 - High voltage shorter distance
 - Low voltage longer distances

IR Sensor Output

Hyperbolic Regression Between Distance and Voltage


VoltagePower (Voltage)

 $y = 14.363x^{-0.843}$

IR Senso	r Output
Distance	Voltage
(cm)	
5	3.09
10	2.08
15	1.50
20	1.26
25	1.01
30	0.90
35	0.77
40	0.66
45	0.61
50	0.52
55	0.49
60	0.46
65	0.42
70	0.40
75	0.36
80	0.36
85	0.34
90	0.31
95	0.30
100	0.29
105	0.27
110	0.27
115	0.25
120	0.25

IR Sensor Output

Hyperbolic Regression Between Voltage and Distance

Distance

— Power (Distance)

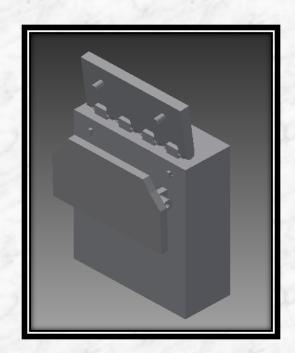
 $y = 23.709x^{-1.179}$

IR Sensor Output						
X 7 14	Distance					
Voltage	(cm)					
3.09	5					
2.08	10					
1.50	15					
1.26	20					
1.01	25					
0.90	30					
0.77	35					
0.66	40					
0.61	45					
0.52	50					
0.49	55					
0.46	60					
0.42	65					
0.40	70					
0.36	75					
0.36	80					
0.34	85					
0.31	90					
0.30	95					
0.29	100					
0.27	105					
0.27	110					
0.25	115					
0.25	120					

Arduino Leonardo

- Microcontroller
- The CPU is the ATmega32u4 chipset
- Emulates a USB 2.0 device
- Computer connection established via a micro USB cable
- Requires very little power
 - Only 8 mAh

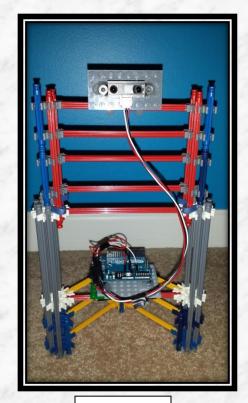
About the Device

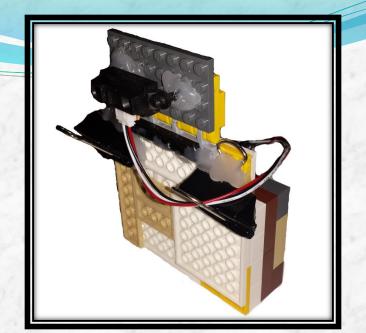

• I call it I.R.E.S.

I - Infra-

R - Red

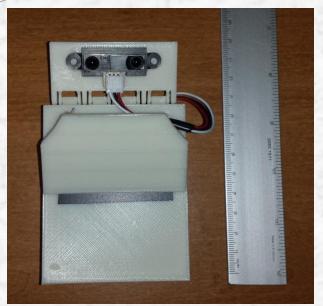
E – Energy


S – Saving (Device)

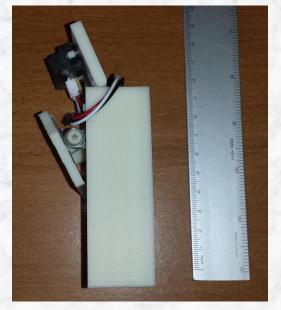



IRES Versions

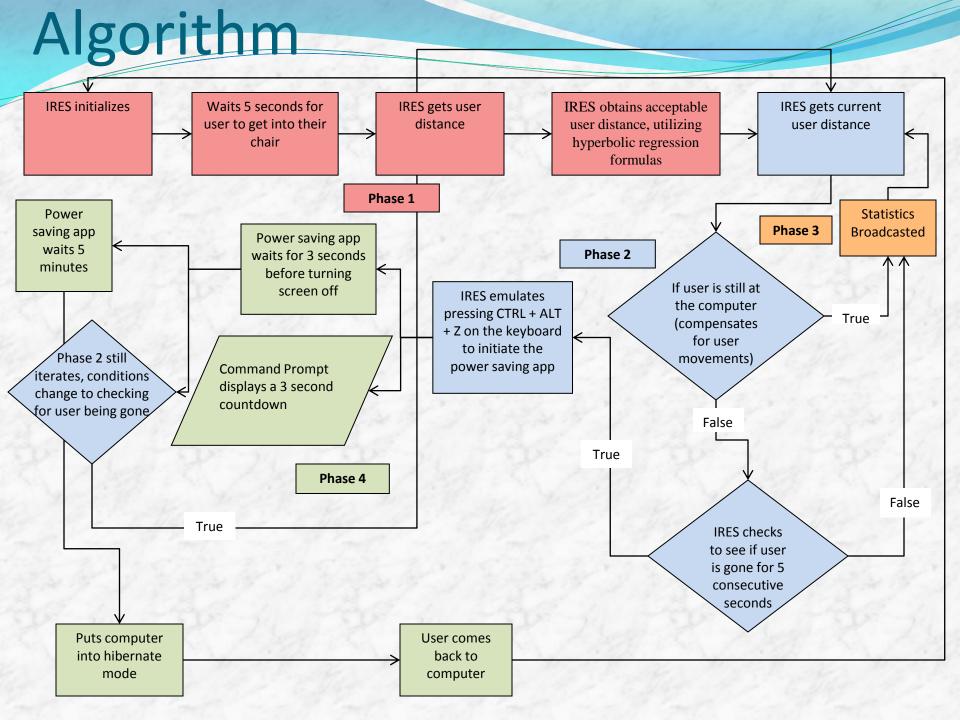
IRES v1

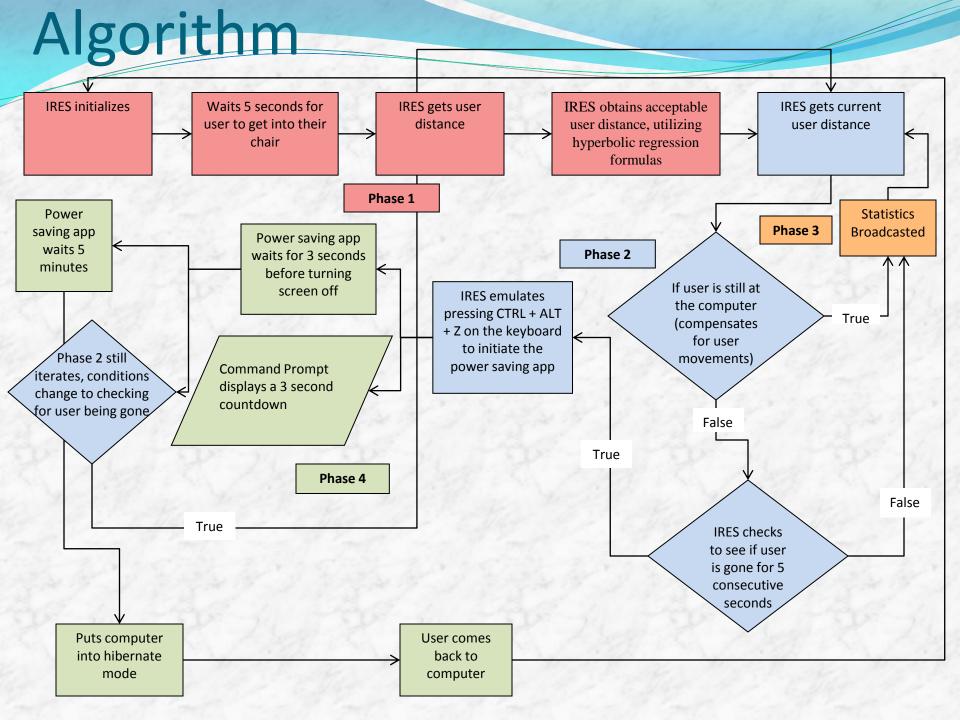


IRES v2


IRES v3

IRES Pictures

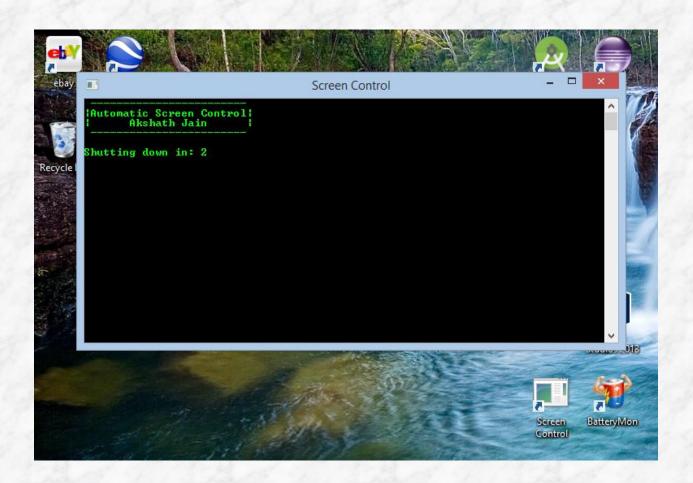


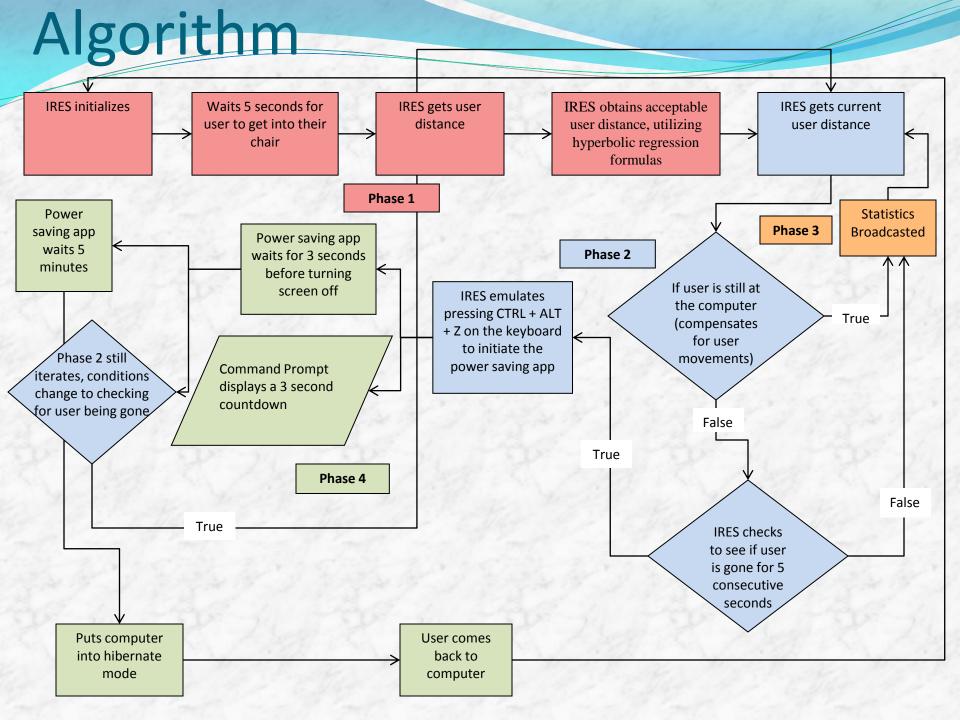

Arduino Code

```
2 Name: Akshath Jain
    Date: 3/14/15
    Purpose: To create a program for IRES that is GUI compatible and efficient
 7 const int IRPIN = A0;
   int time = 0, userStatus = 0; //for userStatus, 0 is false, 1 is true, and 2 is left the computer
   double initialUserDistance, currentUserDistance, acceptableDistance;
10
11 void setup(){
     pinMode(IRPIN, INPUT); //Sets the ir sensor as an input
12
     Keyboard.begin();
13
14
     Serial.begin(9600);
15
     delay(5000); //Waits 5 second
16
      initialUserDistance = getDistance();
     getAcceptableDistance();
17
18 }
19
20 | void loop(){
21
      currentUserDistance = getDistance(); //Gets current user distance
      if(currentUserDistance < acceptableDistance && verifyUserDistance()) {</pre>
23
24
        keyPress();
25
26
        while(currentUserDistance < acceptableDistance){</pre>
27
          currentUserDistance = getDistance();
28
29
          if(currentUserDistance >= acceptableDistance && verifyUserGone())
30
            break:
31
32
          time++;
33
          printStats();
34
35
36
      time++; //keeps track of time
37
      printStats();
38 }
```

```
40 boolean verifyUserDistance() { //return true if user is gone for 5 consecutive seconds
41
     userStatus = 1;
42
43
      for(int i = 0; i < 5; i++){ //This loop tests to make sure that the user is gone, makes sure for 5 seconds</pre>
        currentUserDistance = getDistance(); //Gets user distance
44
45
46
        if(currentUserDistance >= acceptableDistance) { //Checks to see if user is at the computer
47
         userStatus = 0;
         return false; //If the user is still at the computer
48
49
50
51
        time++;
52
        printStats();
53
54
     userStatus = 2;
55
      return true;
56 }
57
58 boolean verifyUserGone(){
59
      userStatus = 1;
60
61
      for(int i = 0; i < 5; i++){
62
        currentUserDistance = getDistance(); //Gets user distance
63
64
        if(currentUserDistance < acceptableDistance){</pre>
65
          userStatus = 2;
66
          return false: //If user is still gone
67
68
69
        time++;
70
        printStats();
71
      userStatus = 0;
73
      return true:
74 }
75
76 double getDistance() { //gets the user's distance from the ir sensor
77
      double temp = 0;
78
79
      for(int i = 0; i < 1000; i++){ //This loop will get a thousand readings</pre>
80
        temp += analogRead(IRPIN);
81
        delay(1);
82
      return temp/1000; //And this will return the average of those thousand readings
83
84 }
```

```
85
 86 double getAcceptableDistance(){
      double v = initialUserDistance * 5.0/1023, d;
 87
 88
      d = 23.709*pow(v, -1.179); //voltage to distance
 89
       d += 20;//this allows the user to move back for 30 cm, equivalent to leaning back.
 90
       acceptableDistance = 14.363*pow(d, -0.843) * 1023.0/5; //distance to voltage
 91 }
 92
 93 void keyPress() { //This function initiates the keypresses required to turn the screen off
 94
       char ctrlKey = KEY LEFT CTRL; //This is how the Arduino recognizes the control key
 95
      char altKev = KEY LEFT ALT: //This is how the Arduino recognizes the alt key
      char zKey = 'z'; //This is how the Arduino recognizes the z key
 96
 97
      Keyboard.press(ctrlKey); //Arduino presses the control key
      delay(10); //Delays for 10 milliseconds
 98
 99
      Keyboard.press(altKey); //Arduino presses the alt key
100
      delay(10);
      Keyboard.press(zKey); //Arduino presses the z key
101
102
       delay(10);
103
      Keyboard.releaseAll(); //Arduino releases all the key's that are being pressed (control + alt + z)
104 }
105
106 | void printStats() {
107
      Serial.print(initialUserDistance);
108
      Serial.print(' ');
109
      Serial.print(acceptableDistance);
110
      Serial.print(' ');
111
      Serial.print(currentUserDistance);
112
      Serial.print(' ');
113
      Serial.print(time);
114
      Serial print(' ');
115
      Serial.print(userStatus);
116
      Serial.print(';');
```


117 | }



Application Code

```
Name: Akshath Jain
    Date: 11/27/14
    Purpose: To control my computer screen
   □#include <iostream>
    #include <Windows.h>
    #include <PowrProf.h>
    #include <time.h>
    #pragma comment(lib, "PowrProf.lib")
11
    using namespace std;
12
13
   □int main()
15
        system("color 0a");
16
17
        cout << " -----" << endl:
18
        cout << "|Automatic Screen Control|" << endl;</pre>
19
        cout << " | Akshath Jain | " << endl;
20
        cout << " -----" << endl;
21
22
        cout << "\nShutting down in: ";</pre>
23
        for (int i = 3; i >= 0; i -- ){
24
            cout << i << "\b"; //Backspace</pre>
25
            Sleep(1000); //Waits 1 seconds, total of 4 seconds
26
27
        SendMessage(HWND BROADCAST, WM SYSCOMMAND, SC MONITORPOWER, (LPARAM)2); //Turns screen off
28
29
        Sleep(300000); //waits 5 minutes
        SetSuspendState(true, true, true); //hibernates computer
30
31
```

Application

Graphical User Interface

```
Name: Akshath Jain
 Date: 3/14/15
 Purpose: Creating a GUI for IRES
import processing.serial.*;
Serial port;
PFont font:
int size = 5;
String IRESData[] = {"00", "00", "00", "0", " "};
String headings[] = {"Initial User Distance: ", "Acceptable User Distance: ", "Current User Distance: ", "Total Time: ", "User Status: "};
String subHeadings[] = {" cm", " cm", " cm", "", ""};
int userStatusColor = #ffffff, totalTimeInSeconds, currentTimeInSeconds = 120000;
void setup(){
  size(700, 500);
  port = new Serial(this, "COM3", 9600);
  port.bufferUntil(';'); //specifies how often serialEvent() will iterate
  font = loadFont("Calibri-50.vlw");
  textFont(font);
void draw(){
 if(totalTimeInSeconds > currentTimeInSeconds){
    if((mouseX > 290 && mouseX < 420) && (mouseY > 175 && mouseY < 235)){ //if mouse is over the dismiss button
      showMessage(#67676F, #F5F5F5); //calls function show message
     if(mousePressed == true){ //if mouse is pressed
        currentTimeInSeconds = totalTimeInSeconds + 10000; //reminds the user to take a break
                                                        //once every 10 minutes after 2 hours
    else
      showMessage(#000000, #fffffff);
  else{
    setBackground();
    for (int i = 0; i < size; i++){
      if (i < 2) //makes text white
        fill(255, 255, 255);
      else //makes this text black
        fill(0, 0, 0);
      text(headings[i] + IRESData[i] + subHeadings[i], 10, (65 + i * 100));
```

```
void serialEvent(Serial port){
  char endStop[] = {' ', ' ', ' ', ' ', ';'};
  for (int i = 0; i < size; i++){
   IRESData[i] = port.readStringUntil(endStop[i]);
   IRESData[i] = IRESData[i].substring(0, IRESData[i].length() - 1);
  fixDistance();
  fixTime();
  fixUserStatus();
void setBackground(){
  background(0, 0, 0); //sets the bacground to black
 fill(255, 255, 255); //makes a white rectangle (x,y,width,height)
 rect(0, 200, 700, 200);
 fill(userStatusColor); //makes a colored rectangle depending on where the user is
 rect(0, 400, 700, 100);
void showMessage(int buttonColor, int textColor){
 background(76,77,85);
 fill(76,77,85);
 rect(0,0,700,500);
 fill(255,255,255);
 text("Time to take a break!", 145, 150);
 fill(buttonColor);
 rect(290, 175, 130, 60); //x,y,length,width
 fill(textColor);
 textSize(30);
 text("Dismiss", 310, 213);
 textSize(50);
void fixDistance(){
 double v, d;
 for (int i = 0; i < 3; i++){
   v = Double.parseDouble(IRESData[i]) * 5.0/1023; //converts the Arduino's [0,1023] into voltage from [0,5]
   d = 23.709 \times pow((float)v, -1.179); //voltage to distance in cm
   IRESData[i] = Integer.toString((int)(d + .5)); //puts data back into array IRESData and
                                                  //rounds distance, converts to integer, and turns it to a string
void fixTime(){
 int h, m, s;
 s = Integer.parseInt(IRESData[3]);
 totalTimeInSeconds = s; //total time in seconds, stored to check if user has been working too long
 m = s / 60; //converts total seconds into the total number of whole minutes
 s %= 60; //converts total seconds into minutes and seconds, disregarding minutes because this is modular division
 h = m/60; //converts the total number of minutes into total number of whole hours
 m %= 60: //converts total minutes into minutes. it disregards hours because this is modular division
```

```
int t[] = {h, m, s};
 String time[] = {"", "", ""};
 for (int i = 0; i < 3; i++){
   if (t[i] >= 0 && t[i] <= 9)
     time[i] = '0' + Integer.toString(t[i]); //converts an int to a string and adds a 0 in front of it
     time[i] = Integer.toString(t[i]); //converts an int to a string
 IRESData[3] = time[0] + ':' + time[1] + ':' + time[2]; //puts fixed data back into array IRESData at index 3
void fixUserStatus(){
 int status = Integer.parseInt(IRESData[4]);
 switch(status){
  case 0:
    userStatusColor = #00D817;
   IRESData[4] = "At Computer";
   break;
  case 1:
   userStatusColor = #F7DF00;
   IRESData[4] = "Verifying User";
   break;
  case 2:
    userStatusColor = #EA0C0C;
   IRESData[4] = "User is Gone";
   break;
```

Initial User Distance: 45 cm

Acceptable User Distance: 65 cm

Current User Distance: 52 cm

Total Time: 00:00:27

User Status: At Computer

Initial User Distance: 45 cm

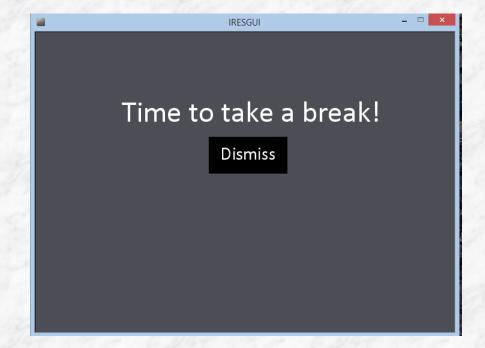
Acceptable User Distance: 65 cm

IRESGUI

Current User Distance: 135 cm

Total Time: 00:05:36

User Status: User is Gone


Initial User Distance: 45 cm

Acceptable User Distance: 65 cm

Current User Distance: 213 cm

Total Time: 00:02:38

User Status: Verifying User

Testing IRES

- Testing IRES, a.k.a. watching paint dry
- Control
 - 3 Trials
- 6 Test Cases
 - 3 Trials
- Surveys from 15 volunteers
 - Help form test cases
- 60 minutes each
- Tested using BatteryMon, by PassMark Software

The Test Cases

- <u>Control</u> Running the computer for 60 minutes without any power saving techniques
- Power consumption of IRES (the device itself)
- 2. Efficiency of the computer's default power saving techniques.
- 3. Efficiency of IRES

The Test Cases (cont.)

- 4. Laptop efficiency with actual usage
- 5. IRES efficiency with actual usage
- 6. Desktop efficiency with actual usage

Questionnaire

	FR 19 11 18 1	Ÿ
Proctor's Name:		
Participant's Name:		

Computer Usage

1. Do you use a computer daily?

Date:

- 2. How long do you use it for on average?
- 3. Do you primarily use a desktop or a laptop?
 - a. (If laptop) Is your laptop plugged in and charging while you work?
 - i. (If yes) Why do you keep your laptop plugged in? Is it because of a short battery life?
 - 1. (If yes) Would you benefit if your battery life was better, giving you more versatility in places you are able to work?

Power Saving Techniques

- 4. Are you aware of any power-saving techniques used by your computer (i.e. screen turns off, computer goes to sleep, etc.)?
 - a. (If Yes) How long until the screen times out? (With absolute certainty)
 - b. How long until your computer goes to sleep? (With absolute certainty)


Work Habits

- 5. When you work, do you ever take short breaks away from your computer? This can include anytime that you are away from your computer.
 - a. (If yes) For how long do you work at a time, and then take a break?
 - b. What is the duration of your break?

Questionnaire Results

					Questio	naire	Resu	Its				
			Compu	iter Usa	age	Power Saving Techniques			Computer Habits			
I	1	2	3	3a	3ai	3ai1	4	4a	4b	5	5a	5b
	Y/N	Hours	Laptop (L)/ Desktop (D)	Y/N	Convenience (C)/ Short Battery Life (SBL)/ Other (O)	Y/N	Y/N	Minutes	Minutes	Y/N	Hours	Minutes
Person												
1	Yes	10	L	Yes	С	Yes	Yes	10	15	Yes	2	10
2	Yes	10	L	Yes	SBL	Yes		5	10	Yes	1	45
3	Yes	10	L	Yes	С	Yes	No	5	15	Yes	2	10
4	Yes	10	L	Yes	С	Yes	Yes	15	30	Yes	1	5
5	Yes	10	D				No	0	0	Yes	3	30
6	Yes	10	L	Yes	С	Yes	Yes	5	15	Yes	1	10
7	Yes	10	L	Yes	С	Yes	Yes	5	10	Yes	0.5	5
8	Yes	8	L	Yes	С	Yes	Yes	5	15	Yes	2	5
9	Yes	10	L	Yes	С	Yes		10	15	Yes	4	5
10	Yes	8	L	Yes	С	Yes	Yes	5	15	Yes	1	32.5
11	No	1/2	D				No	0	0	No		
12	Yes	8	L	Yes	SBL	Yes	No	5	15	Yes	1.75	12.5
13	Yes	8	L	Yes	С	Yes	Yes	5	15	Yes	1	10
14	Yes	8	D				Yes	0	0	Yes	2.50	12.5
15	Yes	8	L	Yes	С	Yes	Yes	5	15	Yes	1.25	7.5
Average		9.14						5.33	12.33		1.71	14.29

BatteryMon

The Results

	IRES Test Results										
Tests	Start				End Time Elapsed		Variables				
	Starting Percentage	Starting Batt	-	Ending Percentage	Ending Batt	-		Applications Open			IR-Sensor
0	%	mAh	mWh	%	mAh	mWh	min	Microsoft Excel	BatteryMon	Microsoft Word	Enabled
Control 1 2 3 Average		3792 3770 3770 3777	43457 43457 43457 43,457.00	75.60% 76.00% 75.60% 75.73%	2868 2866 2851 2862	32867 33034 32856 32,919	60 60 60 60	X X X	X X X		
Test Case 1 1 2 3 Average		3783 3778 3615 3725	43457 43457 41614 42,842.67	75.10% 75.20% 75.40% 75.23 %	2840 2840 2725 2802	32623 32667 31369 32,220	60 60 60	X X X	X X X		x x x
Test Case 2 1 2 3 Average	100.00% 100.00%	3590 3611 3665 3622	43457 43457 43457 43457 43,457.00	93.80% 91.70% 87.30% 90.93 %	3368 3313 3119 3266.67	40770 39871 37929 39,523.33	60 60	X X X	X X X		
Test Case 3 1 2 3 Average	100.00% 100.00%	3573 3561 3561 3565	43457 43457 43457 43,457.00	97.80% 98.10% 98.20% 98.03 %	3492 3493 3497 3494	42480 42624 42680 42,594.67	60 60	X X X	X X X		X X X
Test Case 4 1 2 3 Average		3788 3802 3629 3739.67	43457 43457 41614 42,842.67	73.90% 73.30% 72.80% 73.33%	2800 2788 2641 2743.00	32123 31168 30292 31,194.33	60 60 60	X X X	X X X	X X X	
Test Case 5 1 2 3 Average		3696 3692 3517 3635.00	43457 43457 41614 42,842.67	84.50% 84.50% 85.50% 84.83%	3122 3119 3007 3082.67	36708 36719 35587 36,338.00	60 60 60	X X X	X X X	X X X	X X X
Test Case 6 1 2 3 Average		3818 3793 3652 3754.33	43457 43457 41614 42842.67	71.90% 73.60% 71.20% 72.23 %	2744 2793 2600 2712.33	31224 32001 29626 30950.33	60 60 60	X X X	X X X	X X X	

User Tracking Algorithm Testing

- 15 volunteers to test IRES
- 4 different test cases
 - Pushing chair back and getting up
 - 2. Turning to the right
 - 3. Turning to the left
 - 4. Random However the volunteer gets out of his/her chair
- 3 trials
- IRES registered user movements 100% of the time
 - (o false positives)

Compiled Data

Overall Statistics											
12:3 Laptops to Desktops	Status Qou	IRES	Savings	IRES Energy Reduction							
Desktops	ΔmAh	Δ mAh	mAh	%							
Desktops	915.67	71.00	844.67	92.25%							
Laptops	355.33	71.00	284.33	80.02%							
Average w/ 12:3	467.40	71.00	396.40	84.81%							
Desktops w/ Usage	1034.00	552.33	481.67	46.58%							
Laptops w/ Usage	988.67	552.33	436.33	44.13%							
Average w/ 12:3	997.73	552.33	445.40	44.64%							

Savings Statistics												
	Energy Statistics Savings											
	# of Computers	Energy	Computer	Energy	Work	CO ₂	IRES	IRES w/				
	# Of Computers	Consumption	Usage	Cost	Days	002	Optimal	Usage				
	Computers (million)	kW (w/ 12:3)	Hours	¢/kWh	Days	lbs	9/	6				
Yes	289.89	0.12	9.14	12.46	261	1.855	84.81%	44.64%				
No	20.71	0.12	0.5	12.46	121	1.855	84.81%	44.64%				

mpacts

- Cost Effective
 - Approximately \$10,355,900,180 / year on computers
 - **44.64**% mitigation
 - Equates to \$4,624,306,919 / year savings
- Environment
 - Currently emmit **76,968,868.41 Tons** of CO₂ / year on computers
 - Prevent **34,472,699.91 Tons** of CO2 from entering the atmosphere yearly
 - Automobiles in the US account for 1,522,000,000 Tons of CO2 every year

Conclusion

- My hypothesis was correct, by creating a device that controlled the largest processes on a computer, I was able to mitigate power consumption.
- Save \$4,624,306,919 worth of electricity
- Prevent **34,472,699.91 Tons** worth of CO2 entering the atmosphere

Practicality

- IR Sensor: \$10.00
- Arduino: \$20.00
- Cable: \$2.00
- Total: \$32.00

Acknowledgements

- Mr. Bruce Allen
- Mr. Keith Banks NAI Technology Education Department
- Judges & Event coordinators

```
"The Absolute Beginner's Guide to Arduino." Forefront.io. Forefront.io, 1 Jan. 2013. Web. 13

Nov. 2014. <a href="http://www.forefront.io/a/beginners-guide-to-arduino">http://www.forefront.io/a/beginners-guide-to-arduino</a>.
```

"Create Keyboard Shortcuts to Open Programs." Windows. Microsoft, 2014. Web. 11 Nov. 2014.

http://windows.microsoft.com/en-us/windows/create-keyboard-shortcuts-open-

"Getting Started with Arduino." Arduino. Arduino, n.d. Web. 11 Nov. 2014.

http://arduino.cc/en/Guide/HomePage.

programs#1TC=windows-7>.

"How Does Infrared Work." Wise Geek. Conjecture, n.d. Web. 11 Nov. 2014.

http://www.wisegeek.org/how-does-infrared-work.htm#comments.

- "How much carbon dioxide is produced by burning gasoline and diesel fuel?" U.S. Energy Information Administration. US Department of Energy, 2015. Web. 3 Feb. 2015. http://www.eia.gov/tools/faqs/faq.cfm?id=307&t=10.
- "How much carbon dioxide is produced per kilowatthour when generating electricity with fossil fuels?" U.S. Energy Information Administration. US Department of Energy, 2015. Web. 3 Feb. 2015. http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11.
- "How much power does a computer use? And how much CO2 does that represent?" *Energuide*.

 Energuide, 2015. Web. 2 Feb. 2015. .
- "Keyboard and Mouse Control." *Arduino*. Arduino, 2014. Web. 8 Dec. 2014. http://arduino.cc/en/Tutorial/KeyboardAndMouseControl.

- Lyadvinsky, Kirill V. "Problem with SuspenState." *StackOverFlow*. Stack Exchange, 2015.

 Web. 17 Jan. 2015. http://stackoverflow.com/questions/3303243/problem-with-setsuspendstate.
- Mahesri, Aqeel, and Vibhore Vardhan. "Power Consumption Breakdown on a Modern Laptop."

 Springer Link. Springer International, 2015. Web. 23 Jan. 2015.

 **Attp://link.springer.com/chapter/10.1007%2F11574859_12>.
- "Monitor Laptop and UPS Batteries." *PassMark BatteryMon*. PassMark Software, 2015. Web. 5

 Jan. 2015. http://www.passmark.com/products/batmon.htm.
- O'Reilly, Dennis. "Calculate Your PC's Energy Use." *CNET*. CBS Interactive, 2014. Web. 11

 Nov. 2014. http://www.cnet.com/news/quirky-ge-unveil-new-affordable-smart-home-line/.
- "Recent Data." U.S. Energy Information Administration. U.S. Department of Energy, 2015.

 Web. 2 Feb. 2015. http://www.eia.gov/electricity/.

```
"SendMessage Function." Windows Dev Center. Microsoft, 2014. Web. 10 Nov. 2014.
```

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644950(v=vs.85).aspx.

"SetSuspendStateFunction." Windows Dev Center. Microsoft, 2015. Web. 14 Jan. 2015.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa373201(v=vs.85).aspx.

"Top Ten Countries with Highest number of PCs." Maps of World. Compare Infobase, 2015.

Web. 2 Feb. 2015. http://www.mapsofworld.com/world-top-ten/world-top-ten-personal-computers-users-map.html.

"What Is Arduino." Arduino. Arduino, n.d. Web. 11 Nov. 2014.

http://arduino.cc/en/Guide/Introduction>.

"WM_SYSCOMMAND Message." Windows Dev Center. Microsoft, 2014. Web. 10 Nov. 2014.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms646360(v=vs.85).aspx.